Uncertainty, Ignorance and Solar Geoengineering

Richard J. Zeckhauser

richard_zeckhauser@harvard.edu hks.harvard.edu/fs/rzeckhau/ In collaboration with:

Gernot Wagner

gwagner@fas.harvard.edu gwagner.com "SG is both a hedge against uncertain but potentially catastrophic risks of (or, alternatively, damages from) climate change – and has its own associated risks, known and unknown.

"How can we better understand these uncertainties and incorporate them into useful decision-making processes?"

Risk, uncertainty, and ignorance

A gambler's perspective

Risk: probabilities of states of the world known

Rolling a 7 with one roll of two dice

Uncertainty: probabilities of states of the world unknown

> The chance that Ted Cruz will be re-elected

Ignorance: Identity of important states of the world is unknown and likely unknowable

Arab Spring, gas explosions in Massachusetts, magic illusion

A medical thought experiment

Another kind of risk-risk tradeoff scenario

Spouse has bad case of cancer

Should she try to get a bone marrow transplant?

Alternative: high-dose chemotherapy

Her doctors: "We discourage bone marrow transplants. They have a 4% treatment mortality."

You ask: "What is the gain in long-run survival probability?"

Doctors: "Our best guess would be 10%; maybe higher. Of course, it could be lower."

Sally Zeckhauser is alive and well 23 years later.

Errors of omission and commission should be weighted equally

Uncertainty and climate change

The case of equilibrium climate sensitivity

CO₂ concentrations increase by ~2ppm/year

They have already passed 410ppm, >50% above 280ppm preindustrial

At +2ppm/yr, they will pass 560ppm, 2x preindustrial CO₂, in 75 years

We are "likely" (66%) in a world where 2xCO₂ causes 1.5-4.5°C of warming

So much for averages...

And there's a not-so-small (17%?!) chance of 2xCO₂ leading to >>4.5°C warming

Ignorance: Future Consequences of Climate Change?

Migration as a consequence of climatic extremes

Societal reactions to mass migration

Uncertainty and solar geoengineering

A thought experiment

Adding aerosols to the stratosphere acts to offset warming almost linearly 100,000 tons of SO₂ reduces global average temperatures ~0.1°C 200,000t SO₂ reduce T by ~0.2°C, ...

But what if there's a small (10%?) chance of SO₂ deployment leading to a planetary catastrophe?

How does SG uncertainty compare with climate uncertainty?

What's the head-spinning, presently unknowable SG consequence?

What's the low-probability, high-consequence way SG could go wrong?

Prior: SG good for crop yields due to lower temps

2018 *Nature* cover identifies negative effect due to diffuse sunlight from Pinatubo

But *Nature* study is wrong, too; e.g. misses CO₂ fertilization effect!

How much of what SG will produce is known, not *yet* known, or simply unknowable?

Important major potential downsides of SG possibly unknown

If it stumps Penn & Teller, what hope is there for the rest of us?

- There are lots of ways to do levitation.
- Penn & Teller assessed and dismissed each possible explanation.
- They confessed ignorance.
- Can we proceed to experiment with SG, even recognizing our ignorance?
- That an experiment has unknowable consequences is not a TRUMP card.
- It does not automatically say STOP.

Errors of omission and commission should be weighted equally

However, a "trial run" may be more informative than even intense scientific investigation

Model addressing SG ignorance

Fuller model under development (possibly joint with Chris Avery)—includes ignorance about climate damages

- 2 periods: one experimental, one implementation
- SG is "fast, cheap, and imperfect"
 - "Fast": Feedback within a period
 - "Cheap": Zero direct costs
 - "Imperfect": Potentially large SG damages (SGD), following β -function
- Learning within a period is incomplete, via altering β-function parameters
- SG measured in form of Mt sulfur/year. Sulfate sensitivity ξ in $\frac{W}{m^2}/\frac{Tg \, S}{vr}$
- SG modifies "realized temperature" ($RT_t = T_t \xi SG$)
- Quadratic climate damages: $D_t = A RT_t^2 Y_t$
- Objective to minimize expected damages $E[D_1 + SGD_1 + \delta(RT_2 + SGD_2)]$
- Current simplifying assumptions, relaxed in future work:
 - No mitigation
 - No climate damage uncertainty
 - No risk aversion

Learning about SG damages

SG damages assumed to follow β-function

- Assume SG damages = $a b s^k$, with b = BetaDistribution(α , β)
- Learning represented by changing α and β .
- Objective: (1) Pick s_1 ; (2) Pick s_2 contingent on first-period outcome to minimize expected damages $E[D_1 + SGD_1 + \delta(RT_2 + SGD_2)]$
- E.g.: a = .001, $k = \frac{3}{2}$

Period 1: $\alpha = 2$, $\beta = 2$

Period 2: $\alpha = 9$, $\beta = 20$

Summary of results

Version 0.1

- Greater SG risk, lower s₁
- Greater assumed knowledge, lower s_1
- Longer s₂ period, greater s₁
- s_2 grows with GNP in period 2
- Results intuitive
- Value of exercise: getting thinking straight about value of testing ("Optimal tasting©")

Next model steps:

- Incorporate learning about climate damages
- Incorporate mitigation expenditures
- Add risk aversion
- HARD: Realistic uncertainty parameter values

Concluding thoughts

 The greater are the uncertainties about SG damages, the more appealing, on an expected value basis, is SG

The reason:

Significant positive correlation between SG uncertainty and climate change uncertainty

And:

Climate change uncertainty dramatically more consequential