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Abstract

Equilibrium climate sensitivity (ECS), the link between concentrations of

greenhouse gases in the atmosphere and eventual global average tempera-

tures, has been persistently and perhaps deeply uncertain. Its ‘likely’ range

has been approximately between 1.5 and 4.5 degrees Centigrade for almost

40 years (Wagner and Weitzman, 2015). Moreover, Roe and Baker (2007),

Weitzman (2009), and others have argued that its right-hand tail may be

long, ‘fat’ even. Enter Cox et al. (2018), who use an ‘emergent constraint’

approach to characterize the probability distribution of ECS as having a cen-

tral or best estimate of 2.8◦C with a 66% confidence interval of 2.2-3.4 ◦C.

This implies, by their calculations, that the probability of ECS exceeding

4.5◦C is less than 1%. They characterize such kind of result as “renewing

hope that we may yet be able to avoid global warming exceeding 2[◦C]”. We
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share the desire for less uncertainty around ECS (Weitzman, 2011; Wagner

and Weitzman, 2015). However, we are afraid that the upper-tail emergent

constraint on ECS is largely a function of the assumed normal error terms

in the regression analysis. We do not attempt to evaluate Cox et al. (2018)’s

physical modeling (aside from the normality assumption), leaving that task

to physical scientists. We take Cox et al. (2018)’s 66% confidence interval as

given and explore the implications of applying alternative probability distri-

butions. We find, for example, that moving from a normal to a log-normal

distribution, while giving identical probabilities for being in the 2.2-3.4◦C

range, increases the probability of exceeding 4.5◦C by over five times. Using

instead a fat-tailed Pareto distribution, an admittedly extreme case, increases

the probability by over forty times.
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1. Introduction

Our methodology is straightforward. We simply wish to show that Cox

et al. (2018)’s hopeful upper-tail result is, at least in part, a consequence of

the probability density function (PDF) ‘chosen’ by them. In fact, Cox et al.

(2018)’s methodology involves establishing bounds for equilibrium climate5

sensitivity (ECS) based on identifying a statistic that is highly correlated

with ECS in global climate models. Their chosen statistic is the ratio of

the standard deviation of temperature divided by a measure of the auto-

correlation in temperatures across time. Cox et al. (2018) shows that this

statistic in climate models is highly correlated with ECS in those models.10

Based on calibrating the statistic on the historic record with a least-squares
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regression, they then constrain ECS to lie within 2.2-3.4 ◦C with a 66%

probability.1

We make no judgment on the appropriateness of this ‘emergent constraint’

on ECS other than to argue that Cox et al. (2018)’s least-squares linear re-15

gression immediately leads to normal error terms and that this partially

accounts for their optimistic conclusions.2 We do not re-analyze Cox et al.

(2018)’s underlying data and time-series econometric assumptions. We in-

stead proxy for such different formulations by simple exercises that examine

some consequences of alternative probability distributions.20

2. Analysis

Let x stand for ECS and let fθ(x) represent a PDF of family θ. We

consider three families of two-parameter PDFs: Normal (θ = N), Pareto

(θ = P ), Lognormal (θ = L). For each such family, we fix the two free

parameters by an appropriate condition characterizing the central estimate25

and by simply imposing, as if given, Cox et al. (2018)’s condition that 66%

of the probability lies within the interval [2.2, 3.4]. Mathematically, this Cox

1We surmise that Cox et al. (2018) present the 66% confidence interval in a nod to the

Intergovernmental Panel on Climate Change (IPPC)’s convention of presenting the 66%

“likely” interval (Mastrandrea et al., 2011).
2In fact, a closer climate-econometric examination of Cox et al. (2018)’s proposed metric

may well reveal deeper issues linked to its relatively small sample and the assumed AR(1)

structure, which is likely inappropriate for discrete annual temperature data. See, e.g.,

Bruns et al. (2018).
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et al. (2018) 66% condition is represented for each θ by the equation∫ 3.4

2.2
fθ(x) dx = 0.66. (1)

After calibration, we calculate for each θ the probability that ECS exceeds

4.5◦C, denoted as Prob(Sθ > 4.5). This upper-tail behavior is our object of30

greatest interest here, as it is in much of climate science. Mathematically,

Prob(Sθ > 4.5) ≡
∫ ∞
4.5

fθ(x) dx. (2)

A thin-tailed PDF f(x) approaches zero exponentially (f(x) ∝ exp(−λx)

for some λ > 0) or faster as x→∞. A fat-tailed PDF f(x) approaches zero

polynomially (f(x) ∝ x−k for some k > 0) or slower as x→∞. (The ratio of

a fat-tailed PDF divided by a thin-tailed PDF therefore approaches infinity35

as x→∞.) An intermediate-tailed PDF has a tail which goes to zero slower

than exponentially but faster than polynomially.

A prototype thin-tailed PDF is the Normal:

fN(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (3)

Cox et al. (2018), whose underlying PDF is effectively Normal, characterize

the central or best estimate of climate sensitivity to be 2.8 degrees Celsius.40

We interpret this as signifying here that µ = 2.8 in (3). The standard

deviation σ in (3) is then determined by condition (1) for θ = N , and turns

out to be σ = 0.629. For these two parameter values, we calculate Prob(SN >

4.5) = 0.34%, confirming Cox et al. (2018)’s calculation of “the probability

of ECS exceeding 4.5 degrees Celsius to less than 1 per cent”.45

Because the normal PDF is symmetric, mean, mode, and median are

identical. When the PDF is right-skewed, mode < median < mean, and
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we have to choose which of these three measures of central tendency should

represent a ‘best estimate of 2.8◦C’. For the purpose of this set of numerical

exercises we choose the median, which is in between the mode and the mean.50

This particular measure of central tendency has the intuitively appealing

and readily visualizable characterization that half the probability is above

the median while the other half is below the median.

Fat-tailed polynomial (alternatively power-law) distributions are used to

characterize many physical phenomena, such as earthquakes, hurricanes, vol-55

canic eruptions, floods, meteorite sizes, etc. (Sornette, 2013). ECS, too, is

typically assumed to follow a considerably skewed distribution, with many

estimates seeming to show a thick if not outright fat right tail (Roe and

Baker, 2007; Weitzman, 2009). A candidate for the prototype two-parameter

fat-tailed PDF is the Type I Pareto:60

fP (x) =
a ba

xa+1
, (4)

for x ≥ b, while fP (x) = 0 elsewhere. The positive parameter b represents

the minimum possible value of x, while the positive parameter a is known

as the so-called tail index (smaller values of a correspond to relatively fatter

tails). We do not take seriously the full Pareto PDF for approximating

the distribution of ECS. We simply take it to proxy for a fat upper tail.65

Parameters b and a can be simultaneously fixed or calibrated by setting the

median of fP (x) equal to 2.8 and by imposing the condition (1) for θ = P .

The result of this particular curve-fitting exercise is b = 2.164 and a = 2.69.3

3Note that since b = 2.164, the Pareto PDF excludes any ECS values below 2.164,

clearly an extreme case.
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With these two parameter values, and for what it is worth without thinking

deeply, we mechanically calculate Prob(SP > 4.5) = 13.95%.70

In our opinion, the Normal and Pareto distributions represent two ex-

treme poles in upper-tail behavior. To use the Normal here is to choose an

extremely thin upper-tailed PDF. To use the Pareto here is to choose an

extremely fat upper-tailed PDF. This leads us directly to consider fitting an

intermediate-tailed PDF. The Lognormal distribution is of the form75

fL(x) =
1

xσ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
, (5)

where x is constrained to be non-negative. A convenient property of the

Lognormal PDF is that its tail goes to zero slower than exponentially but

faster than polynomially, making it intermediate between a thin-tailed and

a fat-tailed PDF. In this sense the Lognormal represents a lower bound on

Prob(S > 4.5) for fat-tailed power-law distributions.80

The median of the Lognormal PDF (6) is exp(µ), where µ = 2.8 here.

The appropriate value of σ that appears in the Lognormal PDF (6) is then

fixed or calibrated by condition (1) for θ = L, and turns out to be σ = 3.04.

For these two parameter values, we calculate Prob(SL > 4.5) = 1.82%.

Note that, perhaps by coincidence, this is very close to the geometric mean85

of the comparable thin-tailed Normal and the fat-tailed Pareto probabilities:
√

0.34 · 13.95% = 2.18%.

Let us also re-emphasize briefly that all these calibrations are purely

illustrative. Instead of taking the entire range between 2.2 and 3.4◦C as the

66% interval (equation 1), imagine that we took the interval between the90
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median and the upper bound to be 33%:

∫ 3.4

2.8
fθ(x) dx = 0.33. (6)

That formulation makes no difference for the Normal PDF. It makes a clear

difference for both the Pareto and Lognormal PDFs. In the former case,

Prob(SP > 4.5) = 3.58% instead of 13.95%; in the latter case, Prob(SL >

4.5) = 0.99% instead of 1.82%. The magnitudes are very different, the spirit95

of the story remains the same.

3. Conclusion

This is the end of our story. What is its moral? Tail behavior is often pos-

tulated rather than empirically derived, because oftentimes it is statistically

very difficult, and sometimes even impossible, to estimate the probabilities100

of extreme values when there are so few extreme values of rare tail-events

in the existing data. This is overwhelmingly true for estimates of ECS tail-

probability distributions. Pending other climate-econometric challenges, Cox

et al. (2018) may have found a useful new way of measuring the ‘best esti-

mate’ of ECS. In doing so, however, they have effectively assumed something105

close to a Normal distribution around the best estimate. While this analysis

may be used to justify statements around the ‘best estimate’ of ECS, it does

not justify statements concerning its tail behavior and, in particular, cannot

rule out the fat tails that characterize many physical processes.

Here we demonstrate that Prob(S > 4.5) can vary enormously, depending110

on what tail behavior the underlying PDF is representing. Taking Cox et al.

(2018)’s 66%-interval as given, the intermediate-tailed Lognormal PDF, has
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Prob(SL > 4.5) = 1.82%. This is a probability over five times higher than

what we impute to be the Cox et al. (2018) estimate of Prob(SN > 4.5) =

0.34%. However, this five-times probability result represents a lower bound115

for fat tails and could be made an order of magnitude higher by considering

tail behavior that is fatter than the Lognormal. Sadly, the spirit of these

exercises does not give much sustenance to the hope that extremely high

values of ECS are exceedingly rare.
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