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Abstract 

Deep-seated, persistent uncertainty is a pernicious feature of 
climate change. One key parameter, equilibrium climate 
sensitivity, has eluded almost all attempts to pin down more 
precisely than a ‘likely’ range that has stalled at 1.5–4.5°C for over 
thirty-five years. 

The marginal damages due to temperature increase rise 
rapidly. Thus, uncertainty in climate sensitivity significantly raises 
the expected costs of climate change above what they would be if 
the temperature increase was known to be close to a mean value of 
3.0°C. The cost of this uncertainty is compounded given that the 
distribution of possible temperature changes is strongly skewed 
toward higher values. 
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1. 
 
Climate science is not settled.2 
 
A statement like this makes good sense. Science is rarely truly ‘settled’. But with climate 
change, the words have taken on a whole new meaning among those trying to distort the 
science and delay policy (Oreskes and Conway, 2011; Supran and Oreskes, 2017). We 
focus on a particular aspect of the science not being settled: the deep and persistent 
uncertainties inherent in climate science. Such deep-seated uncertainties have two 
critical implications: First, they suggest that there are some possible outcomes due to 
climate change that we can’t even conjecture. Major surprises must be expected. Second, 
estimates of the fundamental relationships in climate change, notably climate 

                                                   
1 The authors are, respectively, a research associate and lecturer at Harvard University 
(gwagner@fas.harvard.edu); and the Frank P. Ramsey Professor of Political Economy, Harvard Kennedy 
School of Government (richard_zeckhauser@harvard.edu). A more technical exploration of aspects of this 
argument have been published, jointly with Mark C. Freeman, as “Climate Sensitivity Uncertainty: When 
is Good News Bad?” (Freeman et al., 2015). We thank Frank J. Convery, David W. Keith, Chuck Mason, 
Robert B. Litterman, Ilissa Ocko, Michael Oppenheimer, Katheline Schubert, and seminar participants at 
Duke, Harvard, the University of Gothenburg, the University of Minnesota, the American Economic 
Association meetings, and the World Congress of Environmental and Resource Economists for comments 
and discussions. All remaining errors are our own. 
2 Slight variations of this statement have appeared repeatedly over time, at least twice as titles of opinion 
articles in the Wall Street Journal alone (Koonin, 2014; Lindzen, 2009). 
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sensitivity, have stayed persistently uncertain for decades. Despite recent advances in 
pinning down climate sensitivity, critical tail uncertainties persist.3 
 
Climate change has been labelled as “the greatest market failure the world has ever 
seen” (Stern, 2006) and “the mother of all externalities” (Tol, 2009). Tol (2009) 
continues by calling it: “larger, more complex, and more uncertain than any other 
environmental problem.” It is. And the uncertainty itself has multiple dimensions. 
 
For one, going from economic activity to climate damages that impact people’s lives 
entails several links in a chain that leads from economic outputs to emissions, from 
emissions to concentrations, and from concentrations to temperatures for the most 
discussed climate-related measure humans actually care about. Temperature changes, 
in turn, lead to climate impacts, which then generate damages. Each of these links has 
the potential to surprise. A few of the unknowns in this chain represent risks, in the 
Knightian sense of the term, capable of being captured by a probabilistic function. The 
vast majority are what Knight (1921) would term uncertainties, where the probabilities 
themselves are unknown. And some are what we might label ‘unknown unknowns’ or 
simply ‘ignorance’, where even the possible outcomes cannot be identified (Zeckhauser, 
2006). 
 
Each of these links brings with it a set of additional complications. For instance, 
enormous regional variations render already uncertain mean temperature increases 
even more so. Similarly, local temperature effects are but one of many consequences of 
climate change. Other prominent effects include increased extreme weather events, 
increased ocean acidification, disturbances to the global water cycle, and profound 
effects on biodiversity. Each of these has important localized consequences. 
 
We focus on the link between concentrations and temperatures—specifically what 
happens to eventual global average temperatures in equilibrium as concentrations of 
carbon dioxide (CO2) in the atmosphere double. Arrhenius (1896) first calculated the 
answer to this all-important magnitude, since named ‘climate sensitivity’. His estimate: 
5–6°C. That range has by now proven to be too pessimistic. Instead, the current ‘likely’ 
range stands at 1.5–4.5°C (IPCC, 2013). That range has persisted for almost four 
decades. 
 
That consistently wide range is the first and one of the two most significant 
uncertainties linked to climate sensitivity. Charney et al. (1979) first established the 
’likely’ range of climate sensitivity that remains in use today, despite considerable efforts 
to refine it. By now, scientists have formulated a more precise idea of what it means to 
be ‘likely’. The Intergovernmental Panel on Climate Change (IPCC) defines it as having a 
greater-than-66-percent probability (Wagner and Weitzman, 2015, p. 50). That range, 
in turn, has been 1.5–4.5°C throughout most of IPCC’s history (IPCC, 2013, 2001, 1995, 
                                                   
3 Cox et al. (2018a) represents only the latest attempt at specifying an “emergent constraint” on climate 
sensitivity. This article has sparked a vivid debate and a series of formal responses (Brown et al., 2018; 
Po-Chedley et al., 2018; Rypdal et al., 2018; Wagner and Weitzman, 2018), followed by a formal reply by 
Cox et al. (2018b). 
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1990). The sole exception is the Fourth Assessment Report, which narrowed the range 
to 2–4.5°C (IPCC, 2007). The range was expanded back to 1.5–4.5°C in the Fifth 
Assessment Report (IPCC, 2013). Here we do not question the motives behind the 
IPCC’s steps. We simply attempt to interpret the implications. 
 
Meanwhile, the second major uncertainty addresses the skewness of the distribution 
(Figure 1). Skewness is of secondary interest below the likely range, as science can cut 
off the lower tail of the climate sensitivity distribution; adding CO2 is not going to 
decrease temperatures. That is not the case on the upper end, above the cutoff of the 
‘likely’ range, where skewness stretches out the right tail as it does in our illustrative 
calibration in Figure 1. 
 

 

Figure 1—Climate sensitivity, fitting an illustrative log-normal distribution around the IPCC’s (2013) 
‘likely’ range (Wagner and Weitzman, 2015).4 

Given that the expected costs associated with temperature increase at the margin—i.e., 
the expected cost curve is convex (Figure 2)—greater skewness magnifies the costs and 
risks of climate change, all else equal. Here it is important to note the well-known fact 
that the higher the equilibrium climate sensitivity, the longer it will take for global 
average temperatures to reach that equilibrium. All else, thus, may not be equal, as 
discounting of future damages may make the tail of the distribution less severe (Hogan 
and Wagner, 2018; Roe and Bauman, 2012). Much then, in turn, depends on the 
appropriate discount rate. There, too, uncertainty plays a role, as uncertainty around the 
                                                   
4 Note that the calibration assumes equal probability mass below and above the likely range. In particular, 
we follow Wagner and Weitzman (2015) in splitting the difference between the IPCC’s ‘likely’ (66%) and 
‘very likely’ (90%) cut-offs. That implies that the mass between 1.5 and 4.5°C is actually 78%, with 11% 
probability below 1.5°C and 11% above 4.5°C. That, like all other assumptions taken in our calibrations, is 
what we describe as a ‘conservative’ step. Importantly, when we say ‘conservative’, we mean an 
assumption that biases our Willingness to Pay (WTP) to avoid climate change downward—unlike 
‘conservative’ how it is commonly used in risk management, which would lead to a much higher WTP in 
order to minimize climate risk whenever possible. 
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right rate points to declining rates over time (Arrow et al., 2013, 2014; Cropper et al., 
2014; Gollier et al., 2008; Gollier and Weitzman, 2010; Heal, 2017). 
 

 
Figure 2—Illustrative damage functions with quadratic and exponential extrapolations (Wagner and 
Weitzman, 2015).5 

The risks become all the more significant once oft-unquantifiable ‘tipping points’ and 
other non-linearities are introduced to the damage function (Hsiang and Kopp, 2018; 
Kopp et al., 2016; Revesz et al., 2014). In theory, these tipping points could be dealt with 
the same way any other type of uncertainty is included in decision models: using 
expected utility theory. A certainty-equivalent6 level of damages would be computed for 
each value of temperature increase. Perfectly constructed expected damages curves take 
account of tipping points. Thus, any jumps in damages get accounted for by the slope of 
the certainty equivalent curve. While the latest econometric damage function exercises 
establish ever better estimates for what is known and measurable (Houser et al., 2015; 
Hsiang et al., 2017), computing a curve that incorporates potential non-linearities 
beyond the historical record is exceedingly difficult to do, and must be expected to be 
speculative (Auffhammer, 2018; Convery and Wagner, 2015; Houser et al., 2015; Kopp 
et al., 2016; Wagner and Weitzman, 2015). 
 
The implications of a heavily right-skewed distribution for climate sensitivity have been 
studied and interpreted in numerous ways (Convery and Wagner, 2015; Heal, 2017; 
Wagner and Weitzman, 2015; Weitzman, 2009, 2011, 2012, 2014, 2015), with Roe and 
Bauman (2012) adding an important counterpoint around the timing element.7 We will 
                                                   
5 The illustrated exponential damage function in Figure 2 is calibrated to produce damages equal to the 
quadratic at 4°C. 
6 The certainty equivalent of a lottery is the amount an individual would accept for sure rather than get the 
prize of the lottery. A risk averse individual might be indifferent between, say, losing $60 for sure and 
having a ½ chance of losing $0 and a ½ chance of losing $100. Thus –$60 is that individual’s certainty 
equivalent for the lottery [½, $0; ½, –$100]. 
7 See Wagner and Weitzman (2015) for a partial response, and Hogan and Wagner (2018) for an attempt 
at a more complete one. 
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instead focus on the first kind of uncertainty: the stubbornly persistent wide ‘likely’ 
range. 
 
The IPCC’s verdict around what constitutes ‘likely’ is based on a number of different 
estimates ranging from paleo-climatic data to current temperature records and climate 
models.8 It is also important to note that it itself is conservative in yet another sense, 
namely the equilibrium climate sensitivity parameter estimated here comes under a 
different name: ‘fast climate sensitivity’. ‘Fast’ applies to what happens over decades or a 
few centuries. That is distinct from ‘Earth system sensitivity’, incorporating long-run 
Earth system feedbacks playing out over many centuries or millennia, which could be 
more than double the 1.5–4.5°C range (Knutti and Hegerl, 2008).9 
 
This definition highlights an important point: whenever asked to make a choice, we tilt 
toward the more conservative assumption, that is the assumption leading to a lesser 
estimate of losses. That goes for the ‘fat tails’ question illustrated in Figure 1, where the 
actual log-normal calibration used turns out not to be a fat-tailed distribution but rather 
a ‘heavy-tailed’ distribution that lies at the cusp of thin- and fat-tailed.10 Similarly, our 
focus on fast climate sensitivity does not capture the full extent of warming. It captures 
what happens in an ‘equilibrium’ that does not take Earth system feedbacks into 
account, which in expectation point to much higher, ultimate climate sensitivity. 
 
Positing that the upper tail has been stretched out is clearly bad—in the sense that it 
ought to magnify concerns about global warming and, rationally, lead to a great 
willingness to pay (WTP) to avoid global average temperature increases. Uncertainty 
around the most likely value similarly increases WTP. Marginal damages from rising 
temperatures increase rapidly. Even in the typically conservative calibration used by the 
most prominent top-down, climate-economy models, damages increase quadratically 
(Auffhammer, 2018). More specifically, they follow an assumed quadratic loss function 
where climate damages 𝐷𝐷 = (1 − 𝑌𝑌)[1 +  𝑎𝑎 ∆𝑇𝑇 +  𝑏𝑏 (∆𝑇𝑇)2]. Making the not 
unreasonable assumption that damages increase more steeply, especially at higher 
temperatures, would make the results worse. Weitzman (2009), for example, uses an 
exponential loss function, with 𝐷𝐷 = (1 − 𝑌𝑌)[𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽)(∆𝑇𝑇)2].11 
 
Under these assumptions, it is then clear that an increase in the upper bound of the 
‘likely’ interval would increase WTP to avoid any particular or probabilistic temperature 
increase. However, what happened between Assessment Reports Four and Five (IPCC, 
                                                   
8 The recent “emergent constraint” work centers on model-based climate sensitivity estimates. See 
footnote 3. 
9 See Proistosescu and Huybers (2017) for a further exploration of fast versus slow modes of climate 
sensitivity. 
10 A ‘fat-tailed’ distribution is one that approaches zero no faster than a polynomial. A ‘thin-tailed’ 
distribution, by contrast, approaches zero at least as fast as an exponential. A log-normal distribution, 
which we use, is on the knife-edge between thin and fat tailed. Following Wagner and Weitzman (2018, 
2015), our calibration employs a log-normal distributions, which approaches zero faster than 
polynomially but slower than exponentially. 
11 The loss function itself is typically written as an inverse, with the loss equal to 1 [1 +  𝑎𝑎 ∆𝑇𝑇 +  𝑏𝑏 (∆𝑇𝑇)2]⁄  
and 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛽𝛽)(∆𝑇𝑇)2 for quadratic and exponential loss functions, respectively. 
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2013, 2007) was that the lower bound of the ‘likely’ range was lowered. In particular, in 
2013, the IPCC lowered the lower bound from 2°C in 2007 back down to 1.5°C, where it 
had been since 1979. 
 
Superficially, this looks like unambiguous good news; part of the distribution had 
shifted downward. That indeed would be unambiguous good news if the distribution 
outside the likely range remained the same. However, this expansion of the likely region 
reflected greater uncertainty. That, in turn, almost certainly implied that the whole 
distribution had become broader. Most importantly, uncertainty above the likely range 
is unambiguously bad. That is also where the marginal damages curve is steepest. This 
loss might overshadow any reassurance from a lowered estimate on the mean. 
 
If the damages function were determined by merely the mean and the standard 
deviation, a common but not necessarily realistic assumption, then the traditional 
mean-standard deviation tradeoff comes into play (Pindyck, 2014). We focus here 
simply on this mean-standard deviation tradeoff, beginning with section 2. Section 3 
provides a more technical discussion, in part since published and expanded upon in 
Freeman et al. (2015). Section 4 discusses some broader implications of persistent 
climate uncertainties. Section 5 concludes. 
 
 
2. 
 
Had global warming turned out to be less severe than previously thought, say if the 
whole distribution or even some portion of the distribution had shifted downward, that 
would be cause for celebration. But merely reducing the bottom value of the likely 
distribution in the IPCC report hardly represents such a shift. Rather, it also spreads the 
overall distribution. Thus, it tells us about the current capabilities of climate science—
notably the current understanding of the climate sensitivity parameter—and indicates 
that the uncertainties are greater than we thought. That alone is disturbing, since 
greater variability indicates greater expected cost. Thus, the news is bittersweet, a 
probable reduction in the mean in exchange for greater variability.12 And the surprise on 
uncertainty is even more disturbing, since the relationship between CO2 emissions and 
global temperatures is perhaps the most studied relationship in the climate debate. 
Uncertainties elsewhere may be even greater. 
 
Some climate uncertainties are neither ‘deep’ nor persistent, though the one around 
climate sensitivity surely is. It is unlike the typical risk situation, where we know the 
odds we face, though we can’t predict the outcome. It also goes beyond traditional 
uncertainty, where we know the possible outcomes but don’t know the probabilities 
attached to each (Knight, 1921). A situation where even the future states of the world 
cannot be defined goes well beyond traditional uncertainty, where some outcomes 
cannot be conjectured. It is what elsewhere has been called “ignorance” (Zeckhauser, 

                                                   
12 Indeed, given right skewness, lowering the lower bound on the ‘likely’ region may actually increase the 
mean temperature change given that the tail beyond the ‘likely’ region will stretch out. 
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2006), and that we here refer to as deep and persistent uncertainty. This type of 
uncertainty  resides in the realm of unknown unknowns (Morris, 2014; Rumsfeld, 
2002). That is the realm where we are with climate sensitivity and, hence, long-run 
climate change projections in general. 
 
To employ an anthropocentric metaphor, Nature hides her secrets. And on climate 
sensitivity, she hides them deeply and persistently. A great variety of phenomena have 
to be understood if they are to be uncovered, and some important phenomena remain 
unknown today. Some critical phenomena may not have been identified. Other factors 
equal, the further are today’s readings, say on temperature, from what we expected 
yesterday, the more we should conclude that we do not understand. Or to put the same 
point in statistical language, the greater today’s uncertainties, the greater should be the 
spread in the subjective distribution of outcomes for what we expect in the future. 
 
This encapsulates our main point: an unexpectedly good low reading today may turn out 
to be bad news from an expected utility standpoint, given that loss functions are convex, 
and the distribution of temperature changes is right-skewed. Though it may well shift 
the mean of what we expect in the future in a favorable direction, it should 
simultaneously warn us of our unexpectedly weak understanding. And that 
disappointment about understanding implies that the standard deviation of what we 
should expect for the future has increased. Given the shape of loss functions, 
accompanied by right skewness of climate sensitivity, we should be risk averse on 
variability in climate change, indeed probably strongly so. Thus, the loss from an 
increased standard deviation may well outweigh any gain from decreased mean. 
 
A 50% chance of a 2°C increase in temperature and a 50% chance of a 4°C increase is far 
worse than a 3°C increase for sure, and may well be worse than, say, a 2.8°C increase for 
sure. That is due to the function that maps average temperatures into damage estimates, 
which increases at an increasing rate. 
 
We wish to make three points clear. First, we recognize that a lesser temperature rise 
will give more credence to those who have criticized climate ‘alarmists’ as having 
significantly exaggerated matters. (However conscientious scientists are, their median 
estimates of consequences will be too high half the time, and never precisely on target.) 
 
Second, we would be happy to accept good news. Thirty years hence, we may find, 
indeed it is 10% likely, that we will discover that climate change was less serious than 
our current 10th percentile estimate (assuming that the estimation process is unbiased). 
That would be fantastic news. By then, we may well know enough from improved 
science and physical observation to be pretty confident that the good outcome is real. 
 
Third, we recognize that significant catastrophes can happen with parameters that are 
merely uncertain. If we look at the 2007-8 financial meltdown, the primary terrible 
outcome was that a broad array of financial assets would tumble like dominoes. This 
was not an outcome that was beyond imagination. In June 2005, The Economist 
declared “the worldwide rise in house prices” to be “the biggest bubble in history” and 
exhorted its readers to “prepare for the economic pain when it pops” (“In come the 
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waves,” 2005). But quite apart from such a warning, the collapse that followed was 
merely a low probability event, no doubt a very low probability event, of the type that we 
have seen before, assuming that our concern were merely the prices of financial assets. 
Think of the Asian financial crisis a decade earlier, triggered by the collapsed of the Thai 
baht. The Dow Jones may plummet to 10,000 or zip up to 30,000, but it will always 
remain on that scale. It will not turn purple. If there were a chance that financial assets 
turned into colors, a chance that we could not possibly imagine, then we would be in the 
world of true ignorance (Zeckhauser, 2006). 
 
Financial markets produce a much easier assessment problem than does climate 
change. Though they may be prone to bubbles, the price of an asset today reflects what 
the market thinks it will be worth in the future taking interest rates and intermediate 
returns into account. In some sense, we get a continual update of the consensus view 
among vast numbers of investors. And those updates move around responding to daily 
snippets of information. With climate sensitivity, by contrast, the IPCC only gives us 
updates every few years. Those updates, in turn, may be highly politicized. 
 
If temperatures in any one year were notably lower than expected, that would be good 
news. But it might well mean that temperatures were suppressed by a transitory 
phenomenon we understand, such as volcanic activity, and will soon increase even faster 
to return to the underlying trend. It surely tells us that the trend itself is more uncertain 
and our scientific understanding less secure than we previously thought. Conceivably an 
entirely new process has been at work, one that the scientific literature has yet to 
consider. 
 
In 2010, the U.S government, deploying the latest models, calculated a social cost of 
CO2 at $25 per ton.13 Re-running the same models in 2013, the number had risen to 
$40, 60 percent higher.14 None of the underlying assumptions, such as the discount 
rate, changed to produce this latter update. The main reason for the shift was due to 
relatively small updates based on the latest climate models circa 2007, at the time when 
the fourth IPCC report was published. The major changes involved updates to the 
carbon cycle representation, and an explicit model of damages from sea-level rise. The 
latest, 2013, IPCC report would likely lead to further changes, and much progress has 
been made on a number of dimensions, most prominently perhaps on econometric 
estimates of damage functions (Auffhammer, 2018; Houser et al., 2015; Hsiang et al., 
2017). 
 
The three climate-economic models used in calculating the U.S. social cost of carbon, 
thus, lag at least half a decade behind incorporating consensus climate science, and 
much further when it comes to incorporating the latest climate damage estimates. It 

                                                   
13 The exact number, in 2007 US$, was $21 for a ton of CO2 emitted in 2015, assuming a central 3% 
discount rate (U.S. Government Interagency Working Group on Social Cost of Carbon, 2010). In 2015 
US$, the number is roughly $25. 
14 This is the ‘central’ estimate for a ton of CO2 emitted in 2015. The precise number, in 2007 US dollars, is 
$37, slightly revised down to $36 in 2015 due to a technical fix (U.S. Government Interagency Working 
Group on Social Cost of Carbon, 2015). Either number is around $40 in 2015 US$. 
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takes time for the findings of the latest IPCC report to make their way through the peer-
review process, and ultimately to feed into policy discussions. The U.S. National 
Academy of Sciences has since reviewed the process and assumptions leading to the U.S. 
social cost of carbon and has recommended major revisions based on the latest science 
(National Academy of Sciences, 2017).15 
 
In any case, the $40 per ton of CO2 externality cost is best viewed as a conservative 
estimate. Most of the factors that we know are left out would further increase the 
number. Most of what we don’t know would push the number further still (Wagner and 
Weitzman, 2015). Of course, there could be unforeseen developments that push the 
number down. One large unknown involves the arena of ‘carbon dioxide removal’ 
(CDR). Such interventions would act as a direct backstop technology if its cost, including 
the costs of the environmental risks it created, would prove to be sufficiently low, or if 
the social cost of carbon were to climb sufficiently high.16 
 
Another large unknown involves the potential use of solar geoengineering—i.e., 
deliberate attempts to change the Earth’s albedo to reflect more sunlight back into space 
and thereby cool the planet (e.g., Keith, 2000; National Research Council, 2015). It is 
inconceivable to us that this technology—despite its risks—would not at least be tried in 
a (perceived) climatic emergency, and long before global average temperatures reach 
anywhere close to the tails of the currently hypothesized temperature distributions 
(Figure 1). Despite being quite different than CDR, it, too, could have direct carbon 
benefits (Keith et al., 2017), which would clearly change the calculation of the optimal 
carbon price. 
 
 
3. 
 
Double CO2 concentrations and, consensus climate science has told us for almost 40 
years, long-run temperatures will rise in expectation by around 3°C. That number has 
stood ever since Jule Charney chaired a National Academy of Sciences Ad Hoc Study 
Group on Carbon Dioxide and Climate in the late 1970s (Charney et al., 1979). His range 
around the average number was plus-minus 1.5°C. That range, too, has withstood the 
test of time. 
 
In 1990, the IPCC picked up Charney’s range and enshrined it as its ‘likely’ range for 
equilibrium climate sensitivity of 1.5–4.5°C (IPCC, 1990). That verdict held for a further 
fifteen-plus years of increasingly intense scrutiny until in 2007, when the IPCC decided 
to trim the bottom of the range, which became 2–4.5°C (IPCC, 2007). Apparent bad 
news: the lowest estimates for climate sensitivity seemed to be ever more out of reach. 

                                                   
15 The National Academy of Sciences itself, of course, is not infallible (e.g., Kelleher and Wagner, 2017) 
and many others have suggested further updates and entirely different approaches (e.g., Heal, 2017; 
Pindyck, 2017). 
16 See National Academies of Sciences (2018) for the latest comprehensive review. 
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Instead, and as a corollary of our other analysis here, the narrower ‘likely’ range was, in 
fact, probably good news in the sense that it lowered the WTP to avoid climate damages. 
 
That narrower ‘likely’ range remained in place until 2013 when the IPCC, met with new 
information, reverted to its prior consensus statement and 1.5°C once again came back 
as the lower bound. Note that this new old range of 1.5–4.5°C only covers what is by the 
IPCC’s own verdict 66% likely. Obviously, there is a chance that the true value will be 
even lower than 1.5°C or higher than 4.5°C. In fact, the IPCC ventures more precise 
guesses as to the likelihood of either possibility. In particular, the 2013 report puts the 
probability of climate sensitivity below 1°C at 5% or below, what it calls ‘extremely 
unlikely’, and the probability of climate sensitivity of above 6°C at 10% or below, what it 
calls ‘very unlikely’. That strongly asymmetric verdict points to the IPCC’s assessment 
that climate sensitivity distribution is clearly skewed toward higher values. That 
skewness is worrisome, though not our focus here. 
 
Instead, this section focuses on the implications of the mean-standard deviation tradeoff 
inherent in the IPCC’s lowering of the lower climate sensitivity bound. In doing so, we 
follow perhaps the most direct—if still imperfect—way of looking at the implications of 
higher temperatures: WTP to avoid climate damages (Pindyck, 2012, 2013). 
 
It is direct because it captures the economic essence of the problem: the worse the 
(economic) consequences of climate change, society’s WTP, appropriately computed, 
should be higher to avoid those consequences. Importantly, our WTP measure is unlike 
the WTP of individuals, which are deeply dependent on human nature. Psychologists tell 
us that an individual’s WTP often bears little relation to the magnitude of the problem 
(Wagner and Zeckhauser, 2011). Framing, for example, typically trumps rational 
responses: ask people the maximum amount they would pay, $1, $2, or $3, for a 
particular widget, and responses might tend toward $2. Ask people the same question 
using $2, 4, or 6, and the most common response might well be twice as high. 
 
WTP here in no way involves asking people their preferred number. It is the direct result 
of an intertemporal optimization problem looking at climate damages over time. 
Specifically, we follow Pindyck (2012, 2013), and ask how much society should be 
willing to pay to avoid global average temperatures exceeding a particular temperature 
increase by 2100. In most of our calibrations, we look to 2°C as our threshold for 
eventual global average warming not to be exceeded.17 
 
Note the important difference between this overall 2°C threshold of average warming by 
2100 and the climate sensitivity parameter itself. The latter estimates what happens to 
equilibrium temperatures—centuries hence—from a doubling of atmospheric CO2 
concentrations. The former looks to actual temperatures in 2100. The link between the 
two is given by concentrations of atmospheric CO2 and other greenhouse gases, and a 
difference in time scales. The transformation from climate sensitivity to actual 

                                                   
17 Our focus on 2°C stands in contrast to Pindyck (2012), who focuses on 3°C for most of the analysis and 
also 0°C in some sensitivity tests (Freeman et al., 2015). 
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temperatures in 2100 requires addressing further uncertainties beyond the climate 
sensitivity parameter itself. 
 
We discuss two such uncertainties here: predicting concentrations of greenhouse gases 
in the atmosphere, and time scales for global average temperatures to reach 
equilibrium. Without a massive global decarbonization effort, global atmospheric CO2 
concentrations are expected to pass 560 ppm, double their pre-industrial levels of 280 
ppm, well before the end of the century. But we cannot simply multiply projected 
concentrations in 2100 by the climate sensitivity, as the latter shows warming in 
equilibrium. In fact, projected global average temperature increases by 2100 under 
business-as-usual conditions, based on four wildly different IPCC scenarios, range from 
a low of 1°C to a high of 5.5°C above pre-industrial levels (IPCC, 2013). Taking a rough 
average of the outer bounds of this range yields an average of slightly above 3°C of 
average warming by 2100, assuming no further climate policy—either in the form of 
massive decarbonization or also direct changes to radiative forcing via solar 
geoengineering. Nevertheless, we follow Pindyck (2012, 2013) in ignoring the potential 
of solar geoengineering and the difference in time scales and instead conflate the two 
distributions of climate sensitivity and temperatures by 2100. 
 
Specifically, we follow Pindyck’s (2012, 2013) calibration, but depart in two ways: First, 
instead of relying on Pindyck’s displaced gamma distribution for temperature change, 
we rely on a log-normal calibration most prominently employed by Weitzman (2009).18 
To do so, we replace the temperature probability distributions plotted in Figure 1 of 
Pindyck (2013) with a standard log-normal distribution calibrated to a 66% probability 
of being within the IPCC’s ‘likely’ range (both 2-4.5°C in one instance and then 1.5-4.5°C 
in the post-2013 assessment). 
 
Our second departure from Pindyck’s calibration is that we focus solely on uncertainty 
in the climate sensitivity parameter. Thus, rather than fit a further distribution around 
likely economic damages (another displaced gamma distribution in Pindyck’s case), we 
employ instead point estimates for economic damages.19 That simplification underplays 
the full impact of known uncertainties and therefore dampens the adverse consequences 
of temperature uncertainties. It, thus, biases our results toward less climate action. 
Meanwhile, it does not affect the qualitative implications of our results. 
 
The main result reveals the clear tradeoff between mean and standard deviation, as 
highlighted by Pindyck (2014) and others. We zero in on the 2013 IPCC decision to 
extend the climate sensitivity range by lowering the lower bound from 2°C to 1.5°C. In 
our optimization problem, presented in detail in Freeman et al. (2015), that simple 
move increases WTP from 0.4% to 0.5% of GDP. 
 

                                                   
18 See also Wagner and Weitzman (2015) for further explanation and calibration, presented here in Figure 
1. 
19 Specifically, we set Pindyck’s (2012) loss function parameter γ to 0.0001, slightly below the mean 
estimate used as input in Pindyck’s displaced gamma distribution (Figure 3 in Pindyck, 2012). 
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The mean-variance discussion in this section is distilled from Freeman et al. (2015). 
That paper extends this discussion to a much broader set of questions around mean-
variance tradeoffs, compares it to a mean-preserving spread, and tests the implications 
when various conditions are relaxed. It also addresses the question of the IPCC 
removing the ‘most likely’ or ‘mean’ value altogether. Whereas IPCC (2007) included a 
‘most likely’ value of 3°C, IPCC (2013) did not. Interpreting that move as one that lowers 
the kurtosis of the distribution, as Freeman et al. (2015) shows, would also imply a 
higher WTP. 
 
 
4. 
 
Uncertainty around the seemingly all-important climate sensitivity addresses but one 
dimension. We haven’t yet even considered the human and policy dimensions, which 
are themselves beset with major uncertainties. Deep and persistent uncertainty is a 
constant companion of policymaking for posterity (Summers and Zeckhauser, 2008). 
 
In particular, climate policy also questions standard thinking around ‘saving’ for 
presumably wealthier future generations. The standard story goes something like this: 
Future generations will be much richer than we are, so why sacrifice portions of our 
measly incomes today when future generations will be much more easily able to pay 
larger sums? Such thinking would make sense if only wealth were involved, such as the 
question of how much we should invest to boost economic productivity, where most of 
the eventual productivity increases cannot be claimed by those who pay for them, and 
when those who receive most of the increases will be much richer. 
 
Thinking around climate policy differs in three important respects. The first is 
irreversibility. Since temperatures and sea levels will rise for centuries due to actions 
(not) taken today, it becomes almost irrelevant to argue that future generations would 
have an easier time decreasing their CO2 emissions because they will be richer. Our 
choices—not theirs—define their future. An analogy might be drawn to taking actions 
that yield pleasure today but promote damage to the genes we pass on to our 
descendants. No matter their wealth, or the care they take in protecting the genes they 
inherit, barring unforeseen scientific advances, they will have little ability to spend 
monies to reverse the damages that we impose. 
 
Second, since future generations can indeed be expected to be richer, they would be 
willing and able to pay more for a stable climate. This is not merely a calculation of how 
much future generations would be willing to pay to avoid the worst. On a pure utilitarian 
basis, if climate and wealth are complements as we might expect, future generations will 
get more utility out of a superior climate due to their wealth (Summers and Zeckhauser, 
2008). This observation, combined with elements of irreversibility, implies the need for 
more climate action today for the benefit of future generations, precisely because they 
will be richer (Sterner and Persson, 2008). 
 
The third difference returns to the theme of persistent uncertainty: We often just don’t 
know. Almost four decades of climate science have produced amazing advances in a host 
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of areas. But climate science has not enabled us to pin down the range of equilibrium 
climate sensitivity more finely. There are problems that lurk, ones that have received 
little or no notice to date. 
 
The implications of that third uncertainty may be the most profound, especially because 
they are virtually impossible to quantify. The traditional focus has been on ‘fat tails’ and 
extreme events, an important concept in itself. Yet considering the ‘likely’ climate 
sensitivity values themselves can have similarly profound implications, with the 
conclusion that greater uncertainty often increases the case for climate action (Brock 
and Hansen, 2017; Freeman et al., 2015; Pindyck, 2014). It may, thus, not even be 
necessary to look to the low-probability, high-impact tail events. The not-so-low-
probability, not-quite-as-high-impact events closer to the mean may carry even more 
punch. In either case, unknown and possibly unknowable areas lead us to our framing of 
the problem as deep and persistent uncertainty. 
 
 
5. 
 
Climate uncertainty comes in three flavors: stochastic uncertainty, measurement 
uncertainty, and model uncertainty (Brock and Hansen, 2017). The first is ever-present 
and hardly distinctive here. Measurement uncertainty is the simple fact that we know 
too little about fundamental parameters of the phenomena we do understand. That type 
of uncertainty has indeed diminished over time. We now know more about many 
climatic phenomena than we did four decades ago. Model uncertainty is the crux of the 
issue that concerns us. Four decades of impressive advances in climate science, due to 
the efforts of thousands of individuals, have gotten us no closer to pinning down the true 
value of climate sensitivity. If anything, the latest IPCC report takes a modest step back 
in that regard. 
 
Extending the ‘likely’ range of climate sensitivity to include lower values, 1.5°C instead 
of 2°C as the bottom of the range, is at first glance good news. There is the potential that 
climate change is not as bad as has been feared. Sadly, increasing the ‘likely’ range while 
keeping the probability of what it means to be within that range constant at 66%—much 
like removing the concept of ‘most likely’ value of 3°C entirely—is bad news. 
 
Despite important advances in other areas of climate science, we have discovered new 
uncertainties that make us even less confident about the range of equilibrium climate 
sensitivity than we were before the latest IPCC report was published. Given the 
increasing marginal costs of global warming, greater uncertainty, other factors equal, 
raises the returns from curbing greenhouse gases. On an expected-value basis, the 
massive uncertainties afflicting climate change, thus, should be a prod to policy action. 
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