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Four novel conclusions:

€@ ncreased risk aversion increases the CO, price

in contrast to most standard models employing power utility functions, where increased risk
aversion implies a higher discount rate implies a lower CO, price

© CO, price declines over time
in contrast to most standard models with the exception of Ulph & Ulph (1994) [producer behavior],
Acemoglu et al (2012) [shift from “dirty” to “clean”], Lemoine & Rudik (2017) [inertia]

€ Increased risk aversion increases risk premium relative to expected damages

in contrast to standard models due to their use of power utility functions and (typically) lack of
possibility for ‘catastrophic’ damages

Q Enormous social costs of delay
in contrast to most standard models, which often estimate cost of delay based on (rising) ‘optimal’
CO, price over time in any given year (e.g. Nordhaus 2017, Changes in the DICE model, 1992 —2017)

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



0 Standard utility specifications misrepresent (climate) risk
Constant Relative Risk Aversion (CRRA) utility conflates risk across time and across states of nature
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e CO, price declines over time

Starts $>100, declines as uncertainties clear up
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Q CO, price sensitive to utility specification for ‘reasonable’ RA values
No difference between CRRA and EZ utility at RA=1.1, large differences for RA>~3

—e— EZ utility, RA = 15
$140 —¥— EZ utility, RA = 7 (base case)
—a— EZ utility, RA = 1.1
$120 —<+— CRRA, RA=1.1
—»— CRRA, RA=3.5
c? $100 —o— CRRA, RA=7
O —=— CRRA, RA=15
-E %80
-
E $60
ATl
$40
%20
0 B ﬁ—z/*'———— —
2050 2100 2150 2200 2250 2300
Year

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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We decompose CO, price into two components
Optimal CO, price = expected damages + risk premium

CO, price reflects future state-dependent damages, D, ,, weighted by their
probability, 7, ., and pricing kernel mg, = ( ou )/(GU)

aCS’t 6c0 )

T S(b

T
Z z Ts,tMstDse | = z Eo [mtDt]
t=1s=1 t=1

which we rearrange as:

T T
z EO [ﬁlt] ¢ EO [Et] + z COUO (ﬁlt, Et)
t=1 o t=1 >

Expected'Damages Risk Premium

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



e Epstein-Zin utility allows risk premium to play a significant role

Increased risk aversion increases risk premium relative to expected damages
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@ Enormous social costs of delay

Cost of delay increases roughly with the square of time

Q: How much additional consumption is required throughout the first
period to bring the utility with first-period mitigation set to zero up to
the unconstrained level?

First-period length Annual consumption Annual / Total lump-sum
impact during first period compensation estimate
5 years 1% ~$5 trillion / ~$24 trillion

10 years 23% ~$10 trillion / ~ $100 trillion

15 years 36% ~$15 trillion / ~$230 trillion

Each year of delay causes the equivalent
consumption loss over the entire first
period to increase by roughly 2.3%

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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Background



Climate change as a standard asset pricing problem
CO, in the atmosphere as an asset, albeit with negative payoffs

* Model based on Summers & Zeckhauser (2008) to capture climate
change risk and uncertainty

» Epstein-Zin (1989, 1991)-Weil (1990) preferences to allow separation of
intertemporal marginal rate of substitution and risk aversion:

p 1/p
U = (1= p)cf + BI(ELU& DV’
p measures agent’s willingness to substitute across time

a measures agent’s willingness to substitute across states of nature

* A simple, six-period, recombining tree structure solved numerically

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Greenhouse gas emissions, and their mitigation, affect damage outcomes

GHG Global Temp. Consumption

GHG Levels

Emissions Change Damages

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Greenhouse gas emissions, and their mitigation, affect damage outcomes

GHG Global Temp. Consumption

GHG Levels

Emissions Change Damages

Mitigation
(Xy)

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Uncertain relationship between greenhouse gas levels and consumption damages

GHG Global Temp. Consumption

GHG Levels

Emissions Change Damages

|

Mitigation Agent learns exact link between GHG

concentrations and damages over time

(X¢)

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model
Uncertain relationship between greenhouse gas levels and consumption damages

GHG Global Temp. Consumption

GHG Levels

Emissions Change Damages

|
Mitigation

(%) Agent learns exact link between GHG

concentrations and damages over time

Higher risk aversion, higher mitigation

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



The basic model

Consumption as a function of future climate damages

G,H,G GHG Levels Global Temp.
Emissions

Change

Consumption
Damages

Mitigation
(Xy)

Discrete time, T + 1 periods

- Base case: agent’s “endowed” consumption C, grows at 1.5%/year
« Agent’s actual consumption:

C; = Et ’ (1 — Di(Xt, 0;) — Kt(xt))
where D;(X;, 0;) =

damage, fractional to consumption
Xy =

total mitigation through time ¢

Solve for x;*

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Calibrated cost function
Incorporating technological change into the cost function for emissions mitigation

Ct = C¢ - (1 — D¢(CRF, 6;)) (1 — Kt(xt))
Allow for technological change of the form:
K(x,t) = k(x)[1 = @o — @1 X(B)]°

where X, : average mitigation up to time t
@, . exogenous technological change
@, : endogenous technological change

Note: if ¢, > 0, a higher level of past mitigation leads to lower cost today

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Calibrated cost of mitigation in base case and with assumed backstop
Non-NPV-positive portion of McKinsey (2009), scaled to 2015 and fit to a power function
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Damage function
Damage is a function of GHG mitigation and the uncertain link from GHGs to final damages

Ce = C_t - (1 — D (CRF,6,)) (1 — Kt(xt))

Endowed consumption is reduced each period by
(uncertain) multiplicative Consumption Damage factor:
(1 - Dt(CRFt, Ht))

where CRF;. Cumulative Radiative Forcing up until time t

0; : characterizes relation between GHGs and
damages

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Damage function components
The damage function is made up of catastrophic and non-catastrophic components

D; = (1 — LAAT(2)) - (1 — Izp| 1 — e TPaamage)
)

\ J |
| |

non-catastrophic catastrophic

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Damage function components
The damage function is made up of catastrophic and non-catastrophic components

D. = (1= L(AT(t)) - (1 = Ipp[ 1 — e TPasmae|)
}

\ J |
| |

non-catastrophic catastrophic

 The non-catastrophic component captures anticipated
losses due to temperature changes

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Damage function components
The damage function is made up of catastrophic and non-catastrophic components

D; = (1 — L(AT()) - (1 = Izp| 1 — e TPaamage| )
/

\ J |
| |

non-catastrophic catastrophic

 The non-catastrophic component captures anticipated
losses due to temperature changes

* The catastrophic component captures losses due to tall
events — low probability, potentially high impact

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Non-catastrophic damage
Mapping from GHG levels, to temperature change, to expected damages

D. = (1= L(AT(t)) - (1 = Ipp[ 1 — e TPasmae|)

where AT,(X,) : mapping from GHG concentrations to
temperature change using log-normal
distribution (Weitzman 2009)

L(AT,(X,)) : mapping from temperature change to
damages using displaced gamma
distribution (Pindyck 2012)

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Catastrophic damage
Captures the possibility of ‘tipping points’

D; = (1 — L(AT()) - (1 = Izp| 1 — e TPaamage| )

In each period, a Poisson process, with a hazard rate based
on AT, governing whether a ‘tipping point’ is hit.

Once a tipping point is hit, the climate remains in a
‘catastrophic’ state through the final period, which results in

additional fractional damage to consumption e~ aamage

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Tipping point probability and resulting damages crucial inputs

Scientific input needed for proper calibration

Probability of reaching a climatic tipping
point as a function of peakT
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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Solving the model...

Python code available via gwagner.com/ezclimate

6 periods
Recombining tree structure
Ordered, equal probability states

Numeric solution, selecting mitigation
level x,to maximize representative agent’s
expected utility

Optimize for CO, price that implements
this level of mitigation

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



‘Recombining’ trees estimate outcome in each stage
Maximize representative agent’s utility, using Epstein-Zin preferences

e.g. 3 paths to this

node: UUD, UDU : s;gteA

| Increasing
Fragility/
Damages
. . 1 . 2 | 3 | 4 | 5 6  Period
| | | | | | |
2015 2030 2060 2100 2200 2300 2400 Year

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



‘Recombining’ trees estimate outcome in each stage
Maximize representative agent’s utility, using Epstein-Zin preferences

Price per ton of CO, across time & states Average mitigation up to a particular

time & state
o< — :

/ 3.49 108%
3.75 107%
[133.54] [93%]
\ / 381 \ / 107%
21.22 380 109% 107%
24.36 3.79 105% 107%
[176.64] [80%]
24.59 350 105% 7%
24.57 == 105% —
3.56 107%
1717 355 93% 107%
5063 124.95 3.87 89% 106%
137.25 3.86 83% T06%
3.84 106%
22.60 397 105% 106%
22.84 4.09 105% 106%
4.59 105%
143.56 22.88 80% 105%
12651 _ _
142.23 27.87 357 69% 99% o6
33.45 354 94% 106%
42.06 o 85% ——
3.65 106%
101.50 3.78 89% 106%
102.16 89.93 4.28 83% 105%
81.06 411 67% 104%
/ 4.19 / 104%
2515 4.75 99% 103%
17.27 64%
—s 30.83 94% { 64%]
39.00 T 85% o
12.52 3.72 53% 104%
4.8 103%
10.94 421 64%
\ 5.46 \ 52%
A= B

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO, price sensitive to utility specification for ‘reasonable’ RA values
No difference between CRRA and EZ utility at RA=1.1, large differences for RA>~3

—e— EZ utility, RA = 15
$140 —¥— EZ utility, RA = 7 (base case)
—a— EZ utility, RA = 1.1
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



2015 CO, price increases with decreasing peakT and disaster_tail

Base case assumes peakT = 6 and disaster tail = 18

T $300
~
-
$250 (U
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o
=
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>
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P
Eak [-Em'ﬂ Fi 8 21

Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Further sensitivity analyses



Increased risk aversion increases CO, prices
With CRRA utility, high risk aversion implies high discount rate implies lower CO, price

Log real return for stocks and bonds Epstein-Zin utility separates risk across
with fitted trend lines time and states of nature

s180 —®— Epstein-Zin utility
—¥— CRRA utility

$160

$140

$120

- o,
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\ 460

v ”

» W $20 1k
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%80
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Source: Return data from Shiller (2000) and since continuously updated: Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019),
http://www.econ.yale.edu/~shiller/data.htm gwagner.com/ezclimate



CO, price in early years first increases then decreases with higher exogenous
technical change, ¢,
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO, price decreases with increased endogenous technical change in later
years
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO, price decreases with backstop, with or without endogenous technological
change

140
’ —e— No backstop
6120 —¥— %350 backstop, ¢, =0.0
—a— %350 backstop, ¢, =0.67
$100
™
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=
ey
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Increasing economic growth, while keep real interest rates constant,
increases CO, prices dramatically in early periods

—e— =2.0%, EIS=1.2
—%— £=1.5%, EIS=0.9
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



Changing economic growth rates, while keeping EIS constant at 0.9,
has little impact on CO,, prices
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



A higher EIS goes hand-in-hand with a higher CO, price in early years

—e— EIS=1.2
$200 —— FEIS=09
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO, prices increase (in early years) with decreasing
pure rate of time preference, §, holding EIS fixed at 0.90
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate



CO, price increases with decreasing pure rate of time preference, §, holding
real interest rates fixed, while adjusting EIS accordingly
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Source: Daniel, Litterman & Wagner (NBER October 2018, PNAS 2019), gwagner.com/ezclimate
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